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Summary. The calculation of the algebraic structure count ofa cyclobutadieno-annelated unbranched 
phenylene is reduced to an enumeration of the Kekul6 structures of an unbranched catacondensed 
benzenoid system. For the latter computation, easy and well-known algorithms exist. 
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Algebraische Strukturz/ihlung von cyclobutadieno-annelierten unverzweigten Phenylenen 

Zusammenfassung. Die Berechnung des algebraischen Strukturzfihlers eines unverzweigten cyclo- 
butadieno-annelierten Phenylens wird auf die numerische Ermittlung der Kekule-Strukturen eines 
unverzweigten cactakondensierten benzenoiden Systems zurfickgeffihrt. Ffir letztere stehen einfache 
und bekannte Algorithmen zur Verffigung. 

Introduction 

Kekul6 valence structures have long been important in organic chemistry because, 
in general, the more such structures that can be drawn for a molecule, the more 
likely it is that the molecule will be stable. Furthermore, polyhexagonal systems 
with no Kekul6 structures are predicted to be definitely unstable [1]. This intuitive 
and empirical relationship was given quantitative expression with the publication 
of estimates of the resonance energy of benzenoid hydrocarbons derived from the 
number of Kekul6 structures (K), either alone [2-4] or with other simple descriptors 
[5, 6]. However, whilst this rationale is very satisfactory for benzenoid hydrocarbons, 
it was known from quite early work [-7] to be inadequate for a full understanding 
of conjugated polycyclic non-benzenoid structures. To improve matters the concept 
of parity was introduced [7], where Kekul6 structures are distinguished as K + (even) 
or K -  (odd). The assignment plus or minus is arbitrary, depending upon the initial 
labelling of the molecule, but two Kekul6 structures are said to be of the same parity 
if one can be obtained from the other by cyclically rearranging an odd number of 
bonds [8-13]. Conversely, their parities oppose if interconversion requires the 
cyclic rearrangement of an even number of bonds. This is illustrated by the simple 
example of benzocyclobutadiene, which has three Kekul6 structures (shown below 
as K a, K b and K~). 
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K a K b K 

K a and K b a r e  of the same parity because one can be converted into the other by 
rotating the conjugated three-double-bond 6-ring by 60 °. Ka can only be converted 
to K c, however, by rotating two bonds around the 4-ring, while K b requires 
movement of four bonds around the perimeter. Needless to say, as structures become 
larger, it soon becomes much more difficult to count Kekul6 structures directly and 
accurately. 

It is the absolute value of the difference between these quantities (K + - K-) ,  
called the algebraic structure count [8, 9] or corrected structure count [10, 11] that 
is important for understanding and rationalizing the re-electron properties of the 
wider range of conjugated polycyclic structures in general, and the thermodynamic 
stability of non-benzenoid aromatic compounds increases with increasing magnitude 
of this count [2, 14]. If the algebraic structure count (ASC) is zero, then the simple 
Hiickel model (see [12, 13]) implies that the molecule's re-system has an open-shell 
electron configuration and is thus likely to be unstable and difficult to synthesise 
(see reference [15] and citations therein). 

A number of methods are available for enumerating Kekul~ structures (see for 
example [ 13, 16-20] ), and a relatively easy method [ 19, 20] makes use of the simple 
recursive relationship 

K{G} = K{G-(e)} + K{G-  l,e]} (1) 

where G is an arbitrary molecular graph, and e can be any edge of it. Deletion of 
edge e alone gives the subgraph G- (e ) ,  while deletion of edge e and its pair of 
vertices results in subgraph G - [e]. 

No analogous relationship is known for the algebraic structure count, although 
it has been demonstrated 1-21] that the ASC conforms to one of the following three 
equalities: 

ASC{G} = ASC{G -(e)}  + ASC{G - l,e]} (2) 

ASC{G} = ASC{G - (e)} - ASC{G - l-e] } (3) 

ASC{G} = - A S C { G - ( e ) }  + A S C { G -  [e]} (4) 

but whether (2), (3) or (4) is applicable depends on the graph G and its edge e. Thus 
combinatorial formulae for the ASC have been obtained for only a few classes of 
non-benzenoid aromatic structures [22-25], in sharp contrast to the great variety 
of such formulae known for the Kekul6 structure count (see within the references 
given above). 

It was recently shown by one of us that the difficult problem of calculating the 
algebraic structure count for phenylenes can be reduced to the easy (and by now 
well known) problem of enumerating the Kekul6 structures of an appropriate 
catacondensed benzenoid system [26, 27]. In this paper we show how to derive the 
ASC of cyclobutadieno-annelated phenylenes. Very few of these compounds are 
known at present, but available details can be found in the recent review by Toda 
and Garrat [15]. 
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Unbranched Phenylenes and some of their Structural Characteristics 

Unbranched  phenylenes are polycyclic conjugated systems composed  of six- 
membered  rings that  are arranged in a chain and coupled to each other via cyclo- 
butadiene units. They are referred to as [n]phenylenes. For  example, I represents 
an unbranched  [11]phenylene. 

1 

2 

Every unbranched  [n]phenylene is associated with an n-cyclic unbranched 
catacondensed benzenoid system to which it can be converted by eliminating the 
four-membered rings from the phenylene, i.e. by collapsing onto  each other the 
hexagons that  share a c o m m o n  cyclobutadiene unit. This is called the hexagonal 
squeeze (HS) .  For  instance, the benzenoid system 2 is the hexagonal squeeze of 1. 

The hexagons in both  an unbranched  phenylene and its hexagonal squeeze are 
of three types. Two of the hexagons are terminal (T), and the remaining n -  2 
hexagons are annelated in either a linear (L) or an angular  (A) mode. 

T L A 

An impor tan t  part  of the topology of these molecules (but not  their complete 
structure!) is described by the so-called LA-sequence (first used in reference [281; 
with details to be found in reference [26]). 

If Z1, Z 2 , . . . , Z n ,  are the hexagons of an unbranched phenylene, labelled 
consecutively from left to right, then the corresponding LA-sequence is an ordered 
n-tuple 50 = (S1, $2, . . . ,  Sn), such that  for i -- 1 and i = n, 

S i = L 
whereas for i =  2 , . . . , n -  1, 

J'L if the hexagon Zi is annelated in a linear mode  
Si 

(A if the hexagon Zi is annelated in an angular  mode. 

For  example, 5°(1) = 50(2) = L L L A L A A L A L L .  

Using the conventions L = L 1, L L  - L 2, L L L  = 1 2 , . . . ,  as well as L ° - 1 (i.e. no 
symbol L), we can rewrite the right hand  side as L 3 A L ~ A L ° A L ~ A L a ,  and in general 
write an LA-sequence as 

R E M  50 = Lt° AI21ALt2 A . . . L tp- 1 A L  tp (5) 

where t o ~> 1, tp>~ 1, and t i>~0 for i = 1 , . . . , p -  1. 
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The significance of the LA-sequence is seen from the following results: 

Theorem 1. 50 determines the Kekul6 structure count of an unbranched catacon- 
densed benzenoid system (references [20] and [26] and references 
thererein). 

Theorem 2. 2 '  determines the algebraic structure count of an unbranched phenylene 
[27]. Furthermore, ASC{5 °} : K{5°}Hs where {2'}n s indicates that 
the Kekul6 structure count is computed for the corresponding hexa- 
gonal squeeze. 

Cyelobutadieno-annelated Unbranched Phenylenes and some 
of their Structural Characteristics 

In what follows an arbitrary unbranched phenylene will be represented by the 
diagram below and denoted by U. It is understood that U has n hexagons. 

U 

One additional cyclobutadiene unit can be attached to a terminal hexagon in 
two different ways: linearly (2) or angularly (c~). The respective conjugated systems 
will be denoted by 2U and ~U, respectively. From the point of view of the 
computation of ASC, the actual direction of the angular annelation is immaterial 
(see below); therefore we will not distinguish between systems c~U and c(U, although 
they may correspond to chemically distinct isomers (for the central section need not 
be linear). 

If to both terminal hexagons of an unbranched phenylene, U, a cyclobutadiene 
unit is annelated, then four cases have to be distinguished: 2U2, 2Uc~, ~U2 and ~Uc~: 

X U X  

~.U ~ d U X  
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Results and Discussion 

Denote  the LA-sequence on the unbranched phenylene by ~ and assume that it 
has the form given by Eq. (5). Then the algebraic structure counts of the cyclo- 
butadieno-annelated derivatives of U are equal to the Kekul6 structure counts of 
certain benzenoid systems. The respective results are summarised in Theorems 3 6. 

Theorem 3. If t 1 > 0, then ASC{2U} = K{LtlALt2A.. .  L tp-lALtp}n s. If t 1 = 0 then 
ASC{2U} = K{/22+ ~A...Ltp-IA~P}HS. 

Theorem 4. I f t  o > 1, then ASC{ccU} = K{L t°- IAI2 'A . . .  L tp- ~AlJ~}u s. I f t  o = 1 then 
ASC{~U} = K{L tl+~Ae2A...I2p-IAeÈ}Hs . 

Theorem 5. If ASC{2U2} = ASC{2U'} and ASC{~U2} = ASC{~U'} where V' is 
a phenylene system whose LA-sequence is Lt°AI2~A... L tp-' if tp_ ~ > 0, 
and I2°ALtlALt2A... L tp-2 + ~ if t p _  a = 0. The ASC-values of 2 U' and c~ U' 
are obtained from Theorems 3 and 4. 

Theorem 6. ASC{2U~} = ASC{2U"} and ASC{c~Uc~} = ASC{eU"} where U" is a 
phenylene system whose LA sequence is I2°ALt~A.. . I)~-IAL tp-1 if 
tp > 1 and Lt°ALt~ALt2A.../2 p-1 + i iftp = 1. The ASC values of 2U" and 

U" are obtained from Theorems 3 and 4. 

In order to illustrate these theorems, we compute the algebraic structure counts 
o f2U,  c~U, 2U2, 2Ue, ~U2 and ~U~ for U being the [ l l ]pheny lene  1. In this case 
(see above), p = 4, t o = 3, t 1 = 1, t 2 = 0, t 3 = 1, t 4 = 2. 

1. Because t~ > 0, we have from Theorem 3: 

ASC{21} = K{3} 

when the benzenoid system 3 is depicted below and where 5~(3)= L A A L A L  2. 
Consequently •{3} = 27, and therefore ASC{21} = 27. 

2. Because t o > 1, we have from Theorem 4: 

ASC{~I} = K{4} 

where 2,q~(4) = L 2 A L A A L A L  2, K{4} = 91. Therefore ASC{M} = 91. 
3. The relevant condition is tp_ ~ > 0 and Theorem 5 yields: 

ASC{212} -- ASC{21'} and ASC{~12} : ASC{cd'} 

where the auxiliary system 1' is depicted below. By means of Theorems 3 and 4 
we now readily obtain: 

ASC{21'} = K{5} = 8and therefore ASC{212} = 8 

ASC{~I'} = K{6} = 27 and therefore ASC{~12} = 27 

Notice that 6 is isomorphic to 3. 
4. The relevant condition is tp > 1 and Theorem 6 thus yields: 

ASC{21c~} = ASC{)J"} and ASC{cd~} = ASC{~I"}. 

By means of Theorems 3 and 4 we further get that: 

ASC{21"} = K{7} = 19and therefore ASC{21e} = 19 

ASC {cd"} = K {8 } = 64 and therefore ASC{c~I ~} = 64. 
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3 4 5 

6 7 8 

Note: In 3-8, the figures for calculating K by the well-known Gordon-Davidson "numeral in hexagon" 
method [-29] are shown. For this, start at one end and insert "2" and "3", respectively, in the first two 
hexagons. The "addition constant" is now one. For each subsequent hexagon; form its numeral by 
adding this addition constant to the value of the preceding ring, but immediately after each kink, 
change the value of the addition constant to that of the last ring before the kink. The last figure obtained 
is then the number of Kekul6 structures. 

The application of these rules seems complicated when the details are elaborated 
in this way. For  practical paper and pencil enumeration, however, it is worth 
pointing out that once it is determined which equations are applicable, then the 
actual operations required are very simple, and remain consistent for the various 
combinations. Thus, for the example shown above, the algebraic structure count of 
U is equal to K{2}; if a cyclobutadiene is annelated 2 then, from the appropriate 
end of 2, hexagons are deleted up to and including the first angular hexagon; if it is 
annelated c~, then one hexagon is deleted from the appropriate end, to provide a 
graph G where K { G} = ASC { 1 }. 

The only cases where the above theorems are (formally) inapplicable are the 
linear systems 9 and 10. If these are encountered, then their algebraic structure 
counts can be calculated by means of the simple formulae [-22]: 

A S C { 9 } = I ;  A S C { 1 0 } = 0 f o r a l l n > ~ l .  

9 18 
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The fact that the algebraic structure count is equal to the Kekul6 structure count 
of its hexagonal squeeze was proved earlier [27]. 

Preparatory to treating the case of cyclobutadieno-annelated phenylenes, 
consider first a phenylene molecule and examine the arrangements of double bonds 
in one Of its 4-membered cycles. Five distinct arrangements are possible: A, B, C, D 
and E: 

A B C D E 

In view of the definition of ASC, Kekul6 structures having arrangements A and 
B have opposite parities and thgy mutually cancel (for details see [27] and the 
references quoted therein). Therefore, the Kekul6 structures possessing 4-membered 
cycles with double-bond-arrangements A or B, do not contribute to the ASC. In 
the case of phenylenes, ASC is equal to the number of remaining Kekul6 structures, 
namely those in which in all 4-membered cycles the double bonds have arrangements 
C, D or E. In other words, in order to determine the ASC-value of a phenylene, 
we have to count its Kekul6 structures in which the arrangements A and B are 
absent. 

This conclusion applies also to cyclobutadieno-annelated phenylenes. Here we 
have additional requirement that of the three possible arrangements of double bonds 
in the terminal 4-membered rings (A', B', C'), the arrangement A' and B' are absent: 

A' B' C' 

Without loss of generality we may consider the effect of the annelation of a 
cyclobutadiene unit to the left hand side of the phenylene chain, Further, for the 
sake of simplicity we choose a concrete value for t o (in our case: t o = 3), but the 
reasoning is applicable in an obvious manner to any other value of t o . 

Consider thus an unbranched phenylene and its two cyclobutadieneo-annelated 
derivatives, whose structures are shown in the diagram below: 

), 
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Case 1: linear annelation of cyclobutadiene unit (2) 

As already explained, we have to count the Kekul6 structures in which the double 
bonds occupy neither the positions y and z, nor the positions x and a. Hence, the 
double bonds must be in positions x, b and c. Then the bonds d and e must be single. 
If the bond f were single too, then the bonds g and h would have to be double, 
implying a configuration of type A. Since such a configuration is not permitted, f 
must be double and g and h single. If bond i were double, then we would have a 
configuration of type B. Since this is not permitted, i must be single. Consequently, 
j and k must be double, etc. Continuing this argument, we conclude that until the 
first angularly annelated hexagon (inclusive), the double bonds must have a fixed 
arrangement, as indicated below. 

The above conclusion, combined with Theorem 2, results in Theorem 3. A fully 
equivalent reasoning leads to Theorem 5. 

Case 2: angular annelation of cyclobutadiene unit (~) 

In this case the only permissible arrangement of double bonds in the terminal 
cyclobutadiene fragment is x, a and d. Then the bond e also must be double. 
Consequently, the bonds 9 and h must be single. Now the bond i can be either 
single (resulting in a configuration of type E) or double (resulting in a configuration 
of the type D). Since both D- and E-type arrangements are permitted, we see that 
an angular annelation of the cyclobutadiene fragment influences the arrangements 
of the double bonds only in the (adjacent) terminal hexagon: 

This conclusion, together with Theorem 2, results in Theorem 4. A fully 
analogous reasoning yields Theorem 6. 

Conclusions 

The algebraic structure count is an important quantity for understanding the 
generality of conjugated systems, but with polycyclic structures of more than a 
very few rings it is quite impracticable to evaluate it directly. In this and the 
preceding paper we have shown that for at least some classes of structure the 
problem can be reduced to that of counting Kekul6 structures, for which many 
published methods are available. Here, specifically, the remarkably simple method 
for dealing with phenylenes has been extended to cover cyclobutadieno-annelated 
phenylenes, with only slightly greater complication. 

Because all catacondensed benzenoids possess two or more Kekul6 structures, 
our results imply that ASC >~ 2 for both phenylenes (as noted earlier [27]) and, in 
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general, cyclobutadieno-annelated phenylenes as shown here. The only exceptions 
are the systems 9, where ASC = 1, and 10, for which ASC = 0. These are known 
to be very unstable. 
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